PD-95438

IRF1503PbF

AUTOMOTIVE MOSFET

Typical Applications

- 14V Automotive Electrical Systems
- 14V Electronic Power Steering
- Lead-Free

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax

Description

Specifically designed for Automotive applications, this design of HEXFET® Power MOSFETs utilizes the lastest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon limited)	240	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (See Fig.9)	170	A
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (Package limited)	75	
I _{DM}	Pulsed Drain Current ⊕	960	
$P_D @ T_C = 25 ° C$	Power Dissipation	330	W
	Linear Derating Factor	2.2	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy②	510	mJ
E _{AS} (tested)	Single Pulse Avalanche Energy Tested Value®	980	
I _{AR}	Avalanche Current①	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy®		mJ
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.45	
R _{ecs}	Case-to-Sink, Flat, Greased Surface	0.50	—	°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

IRF1503PbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	30	_		V	$V_{GS} = 0V, I_D = 250\mu A$
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient		0.028		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		2.6	3.3	mΩ	V _{GS} = 10V, I _D = 140A ③
V _{GS(th)}	Gate Threshold Voltage	2.0	_	4.0	V	$V_{DS} = 10V, I_{D} = 250\mu A$
g _{fs}	Forward Transconductance	75	_		S	$V_{DS} = 25V, I_{D} = 140A$
I _{DSS}	Drain-to-Source Leakage Current	_		20	μΑ	$V_{DS} = 30V$, $V_{GS} = 0V$
יטאי				250	μΛ	$V_{DS} = 30V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
1	Gate-to-Source Forward Leakage	_	_	200	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage		_	-200] ''^]	V _{GS} = -20V
Qg	Total Gate Charge		130	200		I _D = 140A
Q _{gs}	Gate-to-Source Charge		36	54	nC	$V_{DS} = 24V$
Q_{gd}	Gate-to-Drain ("Miller") Charge	_	41	62		V _{GS} = 10V
t _{d(on)}	Turn-On Delay Time		17			$V_{DD} = 15V$
t _r	Rise Time	_	130	_	ns	I _D = 140A
t _{d(off)}	Turn-Off Delay Time		59		1115	$R_G = 2.5\Omega$
t _f	Fall Time	_	48	_		V _{GS} = 10V ③
L _D	Internal Drain Inductance		5.0		mII.	Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance		13		nH	from package and center of die contact
C _{iss}	Input Capacitance		5730			V _{GS} = 0V
Coss	Output Capacitance		2250		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		290			f = 1.0MHz, See Fig. 5
Coss	Output Capacitance	_	7580	_]	$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance	_	2290] [$V_{GS} = 0V$, $V_{DS} = 24V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance ④		3420		1 1	$V_{GS} = 0V$, $V_{DS} = 0V$ to 24V

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			240		MOSFET symbol
	(Body Diode)			240	A	showing the
I _{SM}	Pulsed Source Current			000	1 ^	integral reverse
	(Body Diode) ①			960		p-n junction diode.
V _{SD}	Diode Forward Voltage	_	_	1.3	V	$T_J = 25^{\circ}C$, $I_S = 140A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		71	110	ns	$T_J = 25$ °C, $I_F = 140$ A, $V_{DD} = 15$ V
Q _{rr}	Reverse RecoveryCharge		110	170	nC	di/dt = 100A/µs ③
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- $\begin{tabular}{ll} \hline \& Starting $T_J = 25^\circ$C, $L = 0.049mH$\\ $R_G = 25\Omega$, $I_{AS} = 140A$. (See Figure 12). \\ \hline \end{tabular}$
- ③ Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- $\ \, \oplus \,\, C_{oss}$ eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- © This value determined from sample failure population. 100% tested to this value in production.

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

TO-220AB Part Marking Information

TO-220AB package is not recommended for Surface Mount Application.

Data and specifications subject to change without notice. This product has been designed and qualified for Automotive [Q101] market.

